

On the density and the spectrum of minimal submanifolds in space forms

<u>Luciano Mari</u>^{*}, Barnabé P. Lima, José Fabio B. Montenegro, Franciane B. Vieira

*UFC - Fortaleza, CE

Resumo

Let $\varphi: M^m \to N^n$ be a properly immersed minimal submanifold in an ambient space close, in a suitable sense, to the space form \mathbb{N}_k^n of sectional curvature $-k \leq 0$. In this talk, I discuss the relationship between the spectrum of M and its density function

$$\Theta(r) = \frac{\operatorname{vol}(M \cap B_r^n)}{\operatorname{vol}(\mathbb{B}_r^m)},$$

where B_r^n, \mathbb{B}_r^m are geodesic balls of radius r in N^n and \mathbb{N}_k^m , respectively. In a recent joint work with my colleagues quoted above, we proved that if $\Theta(r)$ grows sub-exponentially (k > 0) or sub-polynomially (k = 0) along a sequence, then the spectrum $\sigma(M)$ of the Laplace-Beltrami operator of M is the whole half-line $[(m - 1)^2 k/4, +\infty)$. Notably, the criterion applies to all Anderson's solutions of Plateau's problem at infinity on the hyperbolic space, independently from their boundary regularity. I will also briefly comment on the relationship between the total curvature of minimal submanifolds and the finiteness of the limit of $\Theta(r)$ at infinity.